Some remarks concerning van der Waerden ideal

Jana Flašková ${ }^{1}$

${ }^{1}$ Department of Mathematics
University of West Bohemia in Pilsen

Winter School on Abstract Analysis - section Set Theory January 2013, Hejnice

Arithmetic progressions and van der Waerden theorem

An arithmetic progression of length $/$ is the finite sequence $\{a+i d: i=0,1, \ldots, I-1\}$ where $a, d \in \mathbb{N}$.

Van der Waerden Theorem (finite version).
For any given natural numbers k and l, there is some natural number $W(k, I)$ such that if the integers $\{1,2, \ldots, W(k, I)\}$ are colored, each with one of k different colors, then there exists an arithmetic progression of length at least l, all of which elements are of the same color.

Van der Waerden theorem and AP-sets

Definition.

A set $A \subseteq \mathbb{N}$ is called an AP-set if it contains arbitrary long arithmetic progressions.

Van der Waerden Theorem (infinite version).
If an AP-set is partitioned into finitely many pieces then at least one of them is again an AP-set.

Sets which are not AP-sets form a proper ideal on \mathbb{N}

- van der Waerden ideal denoted by \mathcal{W}

Van der Waerden ideal and other ideals

Szemerédi Theorem.

$$
\mathcal{W} \subseteq \mathcal{Z} \text { where } \mathcal{Z}=\left\{A \subseteq \mathbb{N}: \limsup _{n \rightarrow \infty} \frac{|A \cap n|}{n}=0\right\}
$$

Erdős Conjecture.

$$
\mathcal{W} \subseteq \mathcal{I}_{1 / n} \quad \text { where } \mathcal{I}_{1 / n}=\left\{A \subseteq \mathbb{N}: \sum_{a \in A} \frac{1}{a}<\infty\right\}
$$

What sets belong to \mathcal{W} ?

Example A. $\{n!: n \in \omega\}$ or $\left\{2^{n}: n \in \omega\right\}$ do not contain arithmetic progressions of length 3.

What sets belong to \mathcal{W} ?

Example A. $\{n!: n \in \omega\}$ or $\left\{2^{n}: n \in \omega\right\}$ do not contain arithmetic progressions of length 3.

Example B. $\left\{n^{2}: n \in \omega\right\}$ contains infinitely many arithmetic progressions of length 3 (known by Pythagoras), but no arithmetic progression of length 4 (proved by Euler).

What sets belong to \mathcal{W} ?

Example A. $\{n!: n \in \omega\}$ or $\left\{2^{n}: n \in \omega\right\}$ do not contain arithmetic progressions of length 3.

Example B. $\left\{n^{2}: n \in \omega\right\}$ contains infinitely many arithmetic progressions of length 3 (known by Pythagoras), but no arithmetic progression of length 4 (proved by Euler).

Example C. The set of the prime numbers does not belong to the van der Waerden ideal (Green-Tao).

Van der Waerden ideal \mathcal{W}

The van der Waerden ideal \mathcal{W} is

- a tall ideal - because every infinite $A \subseteq \mathbb{N}$ contains an infinite subset with no arithmetic progressions of length 3
- not a P-ideal - consider for example the sets

$$
A_{k}=\left\{2^{n}+k: n \in \omega\right\} \text { for } k \in \omega
$$

Van der Waerden ideal \mathcal{W}

The van der Waerden ideal \mathcal{W} is

- F_{σ}-ideal - because $\mathcal{W}=\bigcup_{n \in \mathbb{N}} \mathcal{W}_{n}$ where

$$
\mathcal{W}_{n}=\{A \subseteq \mathbb{N}: A \text { contains no a. p. of length } n\}
$$

Van der Waerden ideal \mathcal{W}

The van der Waerden ideal \mathcal{W} is

- F_{σ}-ideal - because $\mathcal{W}=\bigcup_{n \in \mathbb{N}} \mathcal{W}_{n}$ where

$$
\mathcal{W}_{n}=\{A \subseteq \mathbb{N}: A \text { contains no a. p. of length } n\}
$$

The family \mathcal{W}_{n}

- is not an ideal for every $n \in \mathbb{N}$
- generates a proper ideal $\left\langle\mathcal{W}_{n}\right\rangle$

Strictly increasing sequence of ideals

The ideal $\left\langle\mathcal{W}_{n}\right\rangle$ is a tall F_{σ}-ideal for every $n \geq 3$.

Fact.

$$
\mathcal{W}=\bigcup_{n \geq 3}\left\langle\mathcal{W}_{n}\right\rangle
$$

and $\left\langle\mathcal{W}_{n}\right\rangle \subseteq\left\langle\mathcal{W}_{n+1}\right\rangle$ for every $n \in \mathbb{N}$.

Strictly increasing sequence of ideals

Proposition 1.
For every $n \geq 3$ there exists $A \subset \mathbb{N}$ such that

$$
A \in \mathcal{W}_{n+1} \backslash\left\langle\mathcal{W}_{n}\right\rangle
$$

Strictly increasing sequence of ideals

Proposition 1.
For every $n \geq 3$ there exists $A \subset \mathbb{N}$ such that

$$
A \in \mathcal{W}_{n+1} \backslash\left\langle\mathcal{W}_{n}\right\rangle
$$

Proof. Consider

$$
A=\left\{\sum_{i=0}^{k} c_{i} \cdot n^{2 i}: k \in \omega, c_{i}=0, \ldots, n-1, c_{k} \neq 0\right\}
$$

Strictly increasing sequence of ideals

Claim 1. Show $A \in \mathcal{W}_{n+1}$ (straightforward calculation)

Claim 2. Show $A \notin\left\langle\mathcal{W}_{n}\right\rangle$ (use Hales-Jewett theorem)

Strictly increasing sequence of ideals

Claim 1. Show $A \in \mathcal{W}_{n+1}$ (straightforward calculation)

Claim 2. Show $A \notin\left\langle\mathcal{W}_{n}\right\rangle$ (use Hales-Jewett theorem)

Let $L(n) \ldots$ be the set of finite words in the alphabet $\{0,1, \ldots, n-1\}$.
A variable word $w(x)$ is a finite word in the alphabet
$\{0,1, \ldots, n-1, x\}$ in which the variable x occurs at least once.

Hales-Jewett theorem

Hales-Jewett theorem.
For every $n, r \in \mathbb{N}$ there exists a number $H J(n, r)$ such that if words in $L(n)$ of length $H J(n, r)$ are colored by r colors then there exists a variable word $w(x)$ such that $w(0), w(1), \ldots$, $w(n-1)$ have the same color.

The symbol $w(i)$ denotes the word in $L(n)$ which is produced from $w(x)$ by replacing all the occurences of the variable x by the letter of the alphabet in brackets.

Some questions

Conjecture. $\boldsymbol{A} \in\left\langle\mathcal{W}_{n}\right\rangle$ if and only if there exists $k \in \mathbb{N}$ such that A does not contain a copy of n^{k}.

Some questions

Conjecture. $\boldsymbol{A} \in\left\langle\mathcal{W}_{n}\right\rangle$ if and only if there exists $k \in \mathbb{N}$ such that A does not contain a copy of n^{k}.

Question 1. Is it true that whenever a set A does not contain a copy of 3^{2} then $A \in\left\langle\mathcal{W}_{3}\right\rangle$?

Some questions

Conjecture. $\boldsymbol{A} \in\left\langle\mathcal{W}_{n}\right\rangle$ if and only if there exists $k \in \mathbb{N}$ such that A does not contain a copy of n^{k}.

Question 1. Is it true that whenever a set A does not contain a copy of 3^{2} then $A \in\left\langle\mathcal{W}_{3}\right\rangle$?

Question 2. Does the set $\left\{n^{2}: n \in \omega\right\}$ belong to the ideal $\left\langle\mathcal{W}_{3}\right\rangle$?

Cofinality number of \mathcal{W}

$\operatorname{cof}^{(\star)}(\mathcal{I})=\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \wedge(\forall I \in \mathcal{I})(\exists A \in \mathcal{A})\left(I \subseteq^{*} A\right)\right\}$
Proposition 2.

$$
\operatorname{cof}^{*}(\mathcal{W})=2^{\aleph_{0}}
$$

Cofinality number of \mathcal{W}

$\operatorname{cof}^{(*)}(\mathcal{I})=\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \wedge(\forall I \in \mathcal{I})(\exists A \in \mathcal{A})\left(I \subseteq^{*} A\right)\right\}$
Proposition 2.

$$
\operatorname{cof}^{*}(\mathcal{W})=2^{\aleph_{0}}
$$

Sketch of the proof:

1. Show that there exists a perfect set $P \subseteq{ }^{\omega} \omega$ such that every $f \in P$ satisfies $f(n+1)>2 f(n)$ for every $n \in \omega$ and whenever $f_{0}, f_{1}, \ldots f_{k} \in P$ are distinct, there exist infinitely many $n \in \omega$ such that $\left\{f_{0}(n), f_{1}(n), \ldots f_{k}(n)\right\}$ is a set of $k+1$ successive integers.

Cofinality number of \mathcal{W}

$\operatorname{cof}^{(*)}(\mathcal{I})=\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \wedge(\forall I \in \mathcal{I})(\exists A \in \mathcal{A})\left(I \subseteq^{*} A\right)\right\}$
Proposition 2.

$$
\operatorname{cof}^{*}(\mathcal{W})=2^{\aleph_{0}}
$$

Sketch of the proof:

1. Show that there exists a perfect set $P \subseteq{ }^{\omega} \omega$ such that every $f \in P$ satisfies $f(n+1)>2 f(n)$ for every $n \in \omega$ and whenever $f_{0}, f_{1}, \ldots f_{k} \in P$ are distinct, there exist infinitely many $n \in \omega$ such that $\left\{f_{0}(n), f_{1}(n), \ldots f_{k}(n)\right\}$ is a set of $k+1$ successive integers.
2. $A_{f}=\{f(n): n \in \omega\} \in \mathcal{W}$ for every $f \in P$

Cofinality number of \mathcal{W}

$\operatorname{cof}^{(*)}(\mathcal{I})=\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \wedge(\forall \mid \in \mathcal{I})(\exists A \in \mathcal{A})\left(I \subseteq^{*} A\right)\right\}$
Proposition 2.

$$
\operatorname{cof}^{*}(\mathcal{W})=2^{\aleph_{0}}
$$

Sketch of the proof:

1. Show that there exists a perfect set $P \subseteq{ }^{\omega} \omega$ such that every $f \in P$ satisfies $f(n+1)>2 f(n)$ for every $n \in \omega$ and whenever $f_{0}, f_{1}, \ldots f_{k} \in P$ are distinct, there exist infinitely many $n \in \omega$ such that $\left\{f_{0}(n), f_{1}(n), \ldots f_{k}(n)\right\}$ is a set of $k+1$ successive integers.
2. $A_{f}=\{f(n): n \in \omega\} \in \mathcal{W}$ for every $f \in P$
3. $\left\{f \in P: A_{f} \subseteq^{*} B\right\}$ is finite for every $B \in \mathcal{W}$
